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Abstract We present a novel method for solving posture generation
problems in multi-contact motion planning for legged robots. Our ap-
proach builds on the state of the art by generating not only optimal
contact placement locations but also simultaneously verifying the exist-
ence of a feasible trajectory allowing the robot to make those contacts.
By optimising the robot’s velocity rather than its configuration, we are
able to replace what would otherwise be a highly constrained non-linear
optimisation problem with a series of linearly constrained quadratic pro-
grams, which are comparatively much faster to solve. We implement our
posture generator as part of a receding horizon multi-contact planning
algorithm to generate several motion plans in challenging environments,
including chimney climbing and negotiating narrow passages by forming
contacts on walls. Using Bayesian data analysis, we find that the mean
execution time of our planner is faster than the state of the art in all
scenarios tested (ranging from 10 seconds to 10 minutes faster), while in
two of four scenarios it returns shorter paths (ranging from 23.4 stance
changes longer to 53.9 stance changes shorter).

Keywords: Contact planning · Legged robots · Vector-field inequalities.

1 Introduction

A unique challenge of legged motion planning is the need to plan how the robot
will make and break contacts with its environment. If the desired form of motion
is known and approximately cyclical (e.g., walking across uneven terrain), it
may suffice to use a pre-specified or adaptive gait. However, if robots are to
perform acyclic motions such as navigating sparse irregular footholds [2] or very
rough terrain where the precise contact locations are critical [7], then they must
explicitly plan where, and in what sequence, individual contacts should be made
or broken. This is referred to as multi-contact motion planning.

To guarantee that a given contact combination (i.e., a stance [2]) is feasible,
multi-contact planners must find safe whole-body configurations (referred to as
witness postures [4]) that allow the robot to realise the intended stance while re-
specting certain constraints (e.g., avoiding collisions, maintaining balance, etc.).
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The task of finding a witness posture for a given stance is known as the ‘posture
generation problem’.

1.1 Related Works

Multi-contact planners are typically divided into Motion-Before-Contact (MBC)
and Contact-Before-Motion (CBM) approaches [2]. MBC algorithms plan a col-
lision-free torso trajectory and then solve the posture generation problem to find
witness postures for each resulting torso pose. For example, the planner in [14]
generates a large offline dataset of randomly sampled limb configurations that
is searched at runtime to assemble witness postures. MBC planners typically
execute faster than CBM planners, needing only to consider the robot’s torso
pose rather than the full configuration. However, MBC approaches must assume
what kinds of motion the robot can execute and constrain the trajectory search
to regions where such motions are most likely possible, leading to a loss of gener-
ality (e.g., [14] does not consider configurations where all contacts are on vertical
surfaces).

Alternatively, CBM algorithms plan a series of stances that are combined to
form an overall motion, solving the posture generation problem for each stance
to verify their feasibility. Early CBM planners solve the posture generation prob-
lem using random sampling [2,6] that is biased in later works by user-defined
primitives [7]. Another approach by Mordatch et al. uses numerical optimisation
to select optimal contacts from a set of candidate footholds while simultaneously
generating witness postures for each [11]. However, these approaches are all lim-
ited by their reliance on possible footholds being pre-surveyed.

The CVBFP algorithm [4] improves upon that in [11] by allowing the op-
timiser to choose contact locations from anywhere on a given surface. However,
CVBFP assumes that whole-body trajectories between witness postures exist
without verifying this to be the case. This is partially addressed by the multi-
stage framework presented in [5], wherein the first stage computes a sequence
of stances and witness postures, and the second stage generates a whole body
trajectory which executes the motion. However, because the stance sequence is
planned prior to the trajectory, it remains possible that a stance sequence may
be returned for which a feasible trajectory cannot be found.

1.2 Statement of Contributions

We propose a novel posture generator that improves upon the state-of-the-art
by:

– Guaranteeing that kinematically feasible whole-body trajectories between
witness postures exist before they are added to the search tree, verifying
assumptions made in [4,5].

– Generating the stance, witness posture, and whole-body trajectory simul-
taneously, removing the need for any additional stages of planning.
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We also incorporate our posture generator into a novel receding horizon plan-
ning architecture that allows the robot to iteratively re-plan as it explores. We
demonstrate our approach by planning several challenging motions for the Corin
hexapod [15], including scenarios where some or all of the robot’s contacts are on
vertical surfaces (see Fig. 1). Finally, we use Bayesian data analysis techniques
to compare our planner’s performance to that of CVBFP [4].

Figure 1: Simulated example scenarios used in this work. We refer to these scen-
arios (from left to right) as ‘chimney walking ’, ‘wall walking ’, ‘chimney climbing ’,
and ‘stepping stones’.

2 Mathematical Preliminaries

The proposed posture generator relies heavily on geometrical primitives, such
as planes, lines, and points, in addition to rigid transformations, twists, and
wrenches, all of which are elegantly represented using dual quaternion algebra.
Additionally, several robot modelling and control techniques that are useful for
solving posture generation problems have been developed that utilize the strong
algebraic properties of dual quaternion algebra, making this an attractive choice.
Quaternions belong to the set H ≜ {h1 + ı̂h2 + ȷ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R},
where ı̂, ȷ̂, and k̂ denote imaginary units such that ı̂2 = ȷ̂2 = k̂2 = ı̂ȷ̂k̂ = −1.
Quaternions can represent 3D orientations and rotations using elements of the
subset S3 ≜ {h ∈ H : ∥h∥ = 1}, as well as positions using elements of the sub-
set Hp ≜ {h ∈ H : Re (h) = 0} [16]. Dual quaternions extend quaternions
and belong to the set H ≜ {h + εh′ : h,h′ ∈ H, ε2 = 0, ε ̸= 0}. The set of
unit dual quaternions, S ≜ {h ∈ H : ∥h∥ = 1}, represent rigid transform-
ations in 3D space, and any x ∈ S can be written as x = r + ε 1

2pr, where
r ∈ S3 and p ∈ Hp denote the rotation and translation components of the rigid
transformation respectively [16]. Analogously to Hp, we also define the subset
Hp ≜

{
h+ εh′ : h,h′ ∈ Hp

}
, which is useful for modelling certain primitives.

The coefficients of elements of any of the aforementioned sets can be biject-
ively mapped into vectors. For example,

vec3

(
ı̂h1+ȷ̂h2+k̂h3

)
=
[
h1 h2 h3

]T
, vec4

(
h1+ ı̂h2+ȷ̂h3+k̂h4

)
=
[
h1 h2 h3 h4

]T
.

This is particularly convenient when using task-space constrained controllers
with geometrical constraints because they can be formulated as quadratic pro-
grams with linear constraints in the control inputs. For example, consider the



4 D. Derwent et al.

robot configuration q(t) ≜
[
vec4 (r(t)) vec3 (p(t)) θ(t)

]T where r(t) ∈ S3 and
p(t) ∈ Hp denote the torso orientation and position at time t, respectively, such
that the torso pose may be given as x(t) = r(t) + ε 1

2p(t)r(t), and θ(t) is the
vector of joint configurations. Consider a task vector x ≜ x (q), which might
represent, for instance, the robot pose, position, or orientation, and a constant
desired task vector xd ∈ Rm.We can define an error vector x̃ ≜ x − xd and
minimise the error using the control law

u ∈ argmin
q̇

∥J x̃q̇ + ηox̃∥22 + λ2 ∥q̇∥22

subject to W (q) q̇ ⪯ w (q) ,
(1)

where J x̃ = ∂x̃/∂q, ηo ∈ (0,∞), λ ∈ [0,∞), and W (q) ∈ Rℓ×n and w (q) ∈ Rℓ

impose ℓ linear constraints on q̇ [10].
The vector field inequality (VFI) framework allows us to transform non-linear

geometric constraints on q into linear constraints on q̇, which ensure that the
original constraints on q are met [10]. This requires only a differentiable signed
distance function d ≜ d(q) between a geometrical entity kinematically coupled to
the robot and another geometrical primitive in the task space, and the Jacobian
matrix Jd ∈ R1×n such that ḋ = Jdq̇ [10]. To keep a robot entity outside of a
given region, e.g., for collision avoidance, we can define d̃(q) ≜ d(q)− dsafe and
formalise this requirement as d̃(q) ≥ 0. Using the VFI framework, we can restate
this as the constraint

˙̃
d(q) ≥ −ηdd̃(q) ⇐⇒ −Jdq̇ ≤ ηdd̃(q), (2)

where ηd ∈ (0,∞) determines the maximum approach velocity [10]. Similarly, to
keep a robot entity inside a given region, e.g., keeping the centre of mass inside a
support polygon, we restate the requirement as d̃(q) ≤ 0 to obtain the constraint
Jdq̇ ≤ −ηdd̃(q). Robot entities and zones of interest (i.e., restricted zones and
safe zones) can take on a wide variety of forms, with distance functions and
corresponding Jacobians defined in the literature for combinations of points,
lines, planes and many others [10,12,13]. Throughout this paper, the relevant
signed distance function between two primitives a, b ∈ H is denoted by da,b
and the square distance by Da,b. In both cases the Jacobian matrix is denoted
Ja,b. The formulations for each distance function and Jacobian are found in [10],
unless otherwise stated.

3 Proposed Posture Generation Approach

The core idea behind our approach is to use a VFI-constrained controller like (1),
which drives the robot into an appropriate stance/witness posture. This allows
us to simultaneously generate new stances while implicitly generating the witness
posture and whole-body trajectory, which can then be tracked by a closed-loop
controller on the real robot.
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The posture generator receives the initial configuration and stance, the foot
being moved (the foot of interest, or FOI) and the surface to place it upon.
The posture generator works in three stages—the lifting stage, transition stage,
and placement stage. The lifting stage finds a configuration where the robot can
safely break the existing contact with the FOI. The transition stage then moves
the FOI to the desired contact surface, and the placement stage optimises its
location on that surface. Our formulation considers all three stages as part of the
same movement, which is simpler than [4] and [5], where lifting and placing are
distinct actions generated by separate posture generator calls. Often the FOI can
be lifted from the initial configuration, in which case the lifting stage is skipped.
Likewise, if the FOI already lies on the desired surface then the transition stage
is also skipped.

Thanks to our simpler formulation, we replace one non-linear optimisation
problem in the configuration space [4,5] with a series of linearly constrained
quadratic programs in the tangent space, which considerably reduces execution
times. Once the control input for a given sampling period is computed, we use nu-
merical integration to generate the next configuration, recalculate the functions
of q (e.g., the Jacobian matrices), and then generate the next control input. This
continues until either the stage’s stopping criteria are satisfied or an evaluation
limit is reached.

The VFIs guarantee that if the robot entities are outside of their restricted
zones at time t = 0, then they will continue to be so for all times t > 0 [10]
when operating in continuous time. Since we use discrete numerical integration
steps, the robot can briefly enter the restricted zone between consecutive time
steps, potentially resulting in unsafe behaviour or an unfeasible optimisation
problem. To address this, we artificially inflate the boundaries of each restricted
zone by a buffer bd ∈ (0,∞), which can be given as a function of the robot’s
maximum speed and the integration period, and terminate the optimisation if
the non-inflated boundaries are crossed. We thus re-write the constraint (2) for
keeping outside a given region as

˙̃
d(q) ≥ −ηd

(
d̃(q)− bd

)
=⇒ −Jdq̇ ≤ ηd

(
d̃(q)− bd

)
. (3)

Analogously, the tightened constraint to stay inside a safe region is given as

˙̃
d(q) ≤ −ηd

(
d̃(q) + bd

)
=⇒ Jdq̇ ≤ −ηd

(
d̃(q) + bd

)
. (4)

Furthermore, to ensure that there is always at least one solution to problem
(1), we design our constraints such that they are always satisfied by q̇ = 0. When
q violates the inflated boundaries but does not violate the original boundaries
(i.e., 0 ≤ d̃(q) < bd), we have d̃(q) − bd < 0 and q̇ = 0 does not satisfy (3). To
overcome this problem, we add a slack variable sd ∈ [0,max(0,−ηd(d̃(q)− bd))]
to the constraint, resulting in

−Jdq̇ ≤ ηd

(
d̃(q)− bd

)
+ sd. (5)
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Therefore, 0 ≤ d̃(q) < bd implies sd = −ηd(d̃(q) − bd), and (5) becomes
−Jdq̇ ≤ 0, to which q̇ = 0 is a valid solution, disallowing any further pro-
gress towards the restricted zone. Analogously, when staying inside a safe region
but beyond the tightened boundary, we have that −bd < d̃(q) ≤ 0 and the slack
variable is rewritten as sd ∈ [0,max(0, ηd(d̃(q) + bd))] so that (4) is relaxed as
Jdq̇ ≤ −ηd

(
d̃(q) + bd

)
+ sd, making q̇ = 0 a feasible solution. Finally, problem

(1) is rewritten as

u ∈ argmin
q̇,s

Ψ (q̇) + Φ (q̇, s)

subject to q̇ ∈ Cq̇ and s ∈ Cs
(6)

with

Φ (q̇, s) = λ2 ∥q̇∥22 + α2 ∥s∥22 , (7)

where α, λ ∈ [0,∞) and s =
[
s1 · · · sℓ

]T , with si denoting the ith slack variable.
The task function Ψ (q̇) defines the task for a given stage in the form of (1),
whereas Cq̇ and Cs denote the sets of variables q̇ and s, respectively, that respect
the relevant task constraints.

4 Constraints and Objectives

4.1 Common Constraints

Five types of constraints apply to all stages of the posture generator: avoiding
collisions and self-collisions; maintaining balance; preventing contacts from slid-
ing; respecting the limits and underlying topologies of the optimisation variables;
and avoiding excessive torso tilting.

Collisions avoidance and self-collision constraints: We describe the surfaces in
the environment as a set Πobj (q) ⊆

{
πO1

, . . . ,πOn

}
, wherein each element

πOi
∈ S is a plane, such that πOi

= nOi
+ εdOi

, with nOi
∈ S3 ∩Hp being the

plane normal and dOi
being the distance between the plane and the origin of

the reference frame [16]. Since the planes are infinite, to represent non-convex
free spaces (such as the wall walking environment shown in Fig. 1), the planes in
Πobj are selected based on the robot’s configuration q, similar to the approach
in [12]. We define A ⊂ H as the set of dual quaternion primitives representing
each robot body, which may be planes, lines or points [16]. Hence, the collision
avoidance constraints are defined as

−JaiπOj
q̇ ≤ ηd

(
d̃aiπOj

− bd

)
+ saiπOj

, ∀ai ∈ A, ∀πOj
∈ Πobj(q). (8)

The process for self-collision avoidance is similar. We denote by B(a) ⊂ A
the subset of primitives in A which are forbidden from colliding with a ∈ A.
The self-collision constraint is thus written as

−Jabq̇ ≤ ηd

(
d̃ab − bd

)
+ sab, ∀b ∈ B(a), ∀a ∈ A. (9)
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Balance constraint: We use the generalised support polygon proposed by Bretl
and Lall [3] that describes the set of (x, y)-coordinates that the robot’s centre of
mass pC ∈ Hp must occupy to maintain static balance without contact sliding for
contacts on arbitrary surfaces. We define a set of planes Πbalance ≜ {πB1

, . . . ,πBm
}

describing a vertical prism whose (x, y) cross section is the support polygon.
Hence, we obtain the VFI constraint

JpCπBi
q̇ ≤ −ηd

(
d̃pCπBi

+ bd

)
+ spCπBi

, ∀πBi
∈ Πbalance. (10)

Preventing foot sliding: We constrain each foot to remain inside a sphere centred
on its desired location. Defining the set Pfeet ⊂ Hp containing the position of
the frame attached to each foot, and denoting by pdi

∈ Hp the desired location
of foot i, we write

Jpipdi
q̇ ≤ −ηd

(
D̃pipdi

+ bd

)
+ spipdi

, ∀pi ∈ Pfeet, (11)

where D̃pipdi
(q) ≜ Dpipdi

(q)−R2
sphere, with Rsphere being the sphere’s radius.

Respecting variable limits and topologies: Since the configuration vector q in-
cludes the term r ∈ S3, the optimisation must be constrained to ensure that q̇
respects the properties of the underlying topology of unit quaternions—i.e., the
condition ∥r∥ = 1 must be maintained, which is equivalent to vec4 (r)

T
vec4 (r) = 1.

By taking the time derivative of this expression, we obtain the constraint

vec4 (ṙ)
T
vec4 (r) = 0. (12)

We also constrain s to respect its limits, and constrain q̇ to respect limits on q
(similar to [13]). Given limits on q in the form qmin, qmax ∈ Rn, we also define
smax ∈ Rℓ as an upper limit on s such that each element i of smax is given by
smaxi

= max
(
−ηd(d̃i − bd), ηd(d̃i + bd)

)
. Thus we write the constraints

ηd (qmin − q + bd) ≤ q̇ ≤ ηd (qmax − q − bd) , 0ℓ ≤ s ≤ smax, (13)

where 0ℓ ∈ Rℓ is a vector of zeros.

Preventing robot tilting: Finally, we constrain the robot’s orientation to lie within
a maximum tolerance from a desired value. Like CVBFP [4], our planner in-
corporates a guide path that may be generated autonomously or by the user.
Therefore, the desired torso orientation is defined as that of the closest point
on the guide path to the current configuration. We then obtain lines describing
the x, y and z axes of the robot’s torso frame with respect to the world frame
(lx, ly, lz ∈ Hp∩S, respectively) as well as those for the desired torso orientation
(denoted ldx

, ldy
, ldz
∈ Hp∩S). Using the angular distance function between two

lines dϕl1
ϕl2

and its Jacobian matrix Jϕl1
ϕl2

as described in [13], we write

Jϕli
ϕldi

q̇ ≤ −ηd
(
d̃ϕli

ϕldi
+ bd

)
+ sϕli

ϕldi
, ∀li ∈ {lx, ly, lz}. (14)
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4.2 Lifting Stage

In the lifting stage, the posture generator moves the robot into a configuration
where the FOI is not required for the robot’s balance and can thus be safely lifted.
We compute two generalised support polygons [3], one with and one without
the FOI, whose respective sets of planes are denoted Πwith and Πwithout, and
we define the line lcent ∈ Hp ∩ S that is parallel to the world frame’s z-axis
and intersects the centroid of the region Πwithout. Thus, we define the task

function for the lifting stage as ΨL (q̇) =
∥∥∥JpClcent

q̇ + ηod̃pClcent

∥∥∥2
2
, which drives

the robot’s CoM, pC , towards lcent until d̃pCπi
≤ −bd for all πi ∈ Πwithout. If

this condition is already met, then the lifting stage is skipped. We define the sets
Cq̇ and Cs for the lifting stage as the values of q̇ and s, respectively, that respect
constraints (8) to (14). Note that (10) uses Πbalance = Πwith for the lifting stage,
but all subsequent stages use Πbalance = Πwithout.

4.3 Transition Stage

In the transition stage, the FOI is brought into contact with the desired surface
if it is not already. The desired contact surface is a plane πcon ∈ S with bound-
aries defined by the set of planes Πbound. Thus, denoting the position of the FOI
pF ∈ Hp, we consider the transition stage satisfied if and only if d̃pFπi

≤ −bd
for all πi ∈ Πbound and D̃pFπcon

≤ −bd. The objective function for this stage
depends on whether pF respects the boundaries in Πbound. If all the bound-
ary planes are respected, then we constrain pF to continue respecting them by
applying the constraint

JpFπi
q̇ ≤ −ηd

(
d̃pFπi

+ bd

)
+ spFπi

, ∀πi ∈ Πbound, (15)

while the task function ΨTr
(q̇) ≜

∥∥∥JpFπcon
q̇ + ηoD̃pFπcon

∥∥∥2
2

drives pF towards
πcon. Alternatively, if one or more boundary plane in Πbound is not respec-
ted, then constraint (15) is not applied and the task function is re-written

asΨTn (q̇) ≜
∥∥∥JpF lcon

q̇ + ηoD̃pF lcon

∥∥∥2
2
+ ΨTr (q̇), where lcon ∈ Hp ∩ S is a line

through the centroid of the contact plane which is perpendicular to its surface,
similar to that used in the lifting case. Thus this task function also brings pF

into the region described by Πbound.
Finally, pF is constrained to prevent it from crossing in-front of any preceding

legs. For example, the middle left foot cannot cross in-front of the front left foot
(designated the blocking foot). To define this constraint, we first define a plane
πx that intersects the blocking foot with a normal vector parallel to the x-axis
of the robot’s torso frame, which points forward with respect to the body. Thus,
we define the constraint

JpFπx
q̇ ≤ −ηd

(
d̃pFπx

+ bd

)
+ spFπx

. (16)

As before, we define Cq̇ and Cs for the transition stage as the values of q̇ and s,
respectively, that respect constraints (8) to (16).
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4.4 Placement Stage

The placement stage optimises the position of pF on πcon by minimising a
potential field U(q) : Q → R that is based on a guide path composed of line
segments linking waypoint positions for each foot. Here, we consider only the
potential field associated with the FOI, denoted UF (q), as no other foot is free to
move. Let us denote the closest point on the relevant guide path to pF as pU ∈ Hp

and the point that terminates the line segment containing pU as pT ∈ Hp. Thus,
UF (q) is given as UF (q) ≜ βDpFpU

+ γDpUpT
, where β, γ ∈ [0,∞). Thus, to

minimise UF (q), the posture generator forms contacts as close to the guide path
as possible by minimising DpFpU

while making as much progress towards the goal
as possible by minimising DpUpT

. Writing the Jacobian of UF (q) with respect
to q as JUF

(q) ≜ βJpFpU
+ γJpUpT

, the task function for the placement stage
is given as ΨP (q̇) = ∥JUF

q̇ + ηoUF (q)∥22 . Finally we limit the maximum square
distance from pF to πcon by applying the constraint

JpFπcon
q̇ ≤ −ηd

(
D̃pFπcon

+ bd

)
+ spFπcon

. (17)

The sets Cq̇ and Cs are thus given for the placement stage as the values of q̇ and
s respectively which respect constraints (8) to (17).

5 Other considerations

5.1 Numerical Integration

Once a control input is generated by using (6), the robot configuration is up-
dated via numerical integration as follows. First, the configuration velocity vector
q̇ ≜

[
vec4 (ṙ(t)) vec3 (ṗ(t)) θ̇(t)

]T
is extracted from u = (q̇, s), and the torso

pose derivative is calculated as ẋ(t) = ṙ(t) + ε 1
2 (ṗ(t)r(t) + p(t)ṙ(t)). Then, the

next torso pose x(t+ τ) and joint angle vector θ(t+ τ), where τ ∈ (0,∞] is the
integration step, are calculated as

x(t+ τ) = exp (τ ẋ(t)x(t)∗)x(t), θ(t+ τ) = θ(t) + τ θ̇(t), (18)

where the (dual quaternion) exponential map and group operation are used in
the first expression to ensure that the underlying topological space of unit dual
quaternions [16] is respected. The pose x(t + τ) can hence be decomposed into
r(t + τ) and p(t + τ), and used to form the overall configuration q(t + τ). As
mentioned in Section 3, the integration step may bring the robot into the restric-
ted region, necessitating cancelling the control input generation. This happens
most often with the contact sliding constraint (11), which is typically very tight.
We partially address this by using the following constrained controller to correct
drift in the foot positions resulting from the numerical step,

u ∈ argmin
q̇

∥Jdriftq̇ + ηoDdrift∥22 + λ2 ∥q̇∥22

subject to vec4 (ṙ)
T
vec4 (r) = 0,

(19)
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where Ddrift ∈ R6 is the stacked vector of square distances between each foot
and its desired location, and Jdrift = ∂Ddrift/∂q. This reduces the frequency of
violations but still necessitates small values of τ to avoid violating the remaining
constraints on (6). We resolve this by varying τ between τmin and τmax, making
large steps where possible and smaller steps where necessary.

When a value of u is returned by solving (6), the posture generator calculates
q(t + τ) using τ = τmax. The controller in (19) is used to correct any contact
drifts, and the resulting configuration is checked to verify that the constraints are
satisfied. If so, then the posture generator progresses to the next optimisation.
If, however, q(t+ τ) is invalid, then τ ← τ −∆τ and q(t+ τ) is recalculated. To
maintain non-oscillatory numerical stability, we must ensure that ηoτ ≤ 1 [1],
thus each time τ is changed, ηo is re-calculated as ηo = τη/τ, where τη ∈ (0, 1]
is a user-defined constant. This continues until either a valid step is found or
τ = τmin, in which case the posture generator terminates and returns a failure.

5.2 Receding Horizon Planning Strategy

The posture generator is implemented as part of our receding horizon contact
planning (RHCP) algorithm. We do not give a full account of RHCP here, but
it is described more fully in [8]. For the purposes of this paper, the main feature
of RHCP is that it performs a local breadth-first search wherein one call to the
posture generator is made for each combination of a foot and a contact surface
in the environment. The resulting child nodes, each containing a feasible stance
and an associated witness posture, are expanded in the same way to produce a
second generation of children, and so on until a horizon depth kmax is reached.
At that point, the node on the horizon whose witness posture best minimises
the potential field is chosen, the first foot step towards the stance contained in
that node is executed, and the process repeats until the robot reaches the goal.

6 Experiments and Results

Our planner and posture generator were compared to CVBFP in the four sim-
ulated scenarios depicted in Fig. 1. Both planners generated 130 motion plans
for Corin in each scenario using the same starting configurations for both plan-
ners sampled from a normal distribution for each motion plan. RHCP used a
two-step planning horizon. All tests used an Intel® Core™ i9-7900X Processor.
Bayesian data analysis techniques were used to compare the number of stance
changes in each plan and the total planning time, assuming that both metrics
can be modelled by t-distributions [9]. Note that lifting and then placing a foot
counts as two stance changes. The probability distributions of the difference in
means and the effect size for each scenario are shown in Fig. 2. A region of prac-
tical equivalence (ROPE) of ±0.1 was used to determine which effect sizes are
statistically significant and is shown in red in Fig. 2.

In 57 wall walking tests and one stepping stones test, CVBFP failed to return
a plan within two hours and was timed out. These cases are therefore excluded
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from the analysis in Fig. 2. We hypothesise that in these cases CVBFP be-
came stuck because the robot had assumed a configuration where its balance
was critically dependent on a particular foot, preventing that foot from being
lifted and thus preventing the robot from making forward progress. Backing up
in the search tree could resolve this problem, but due to its policy of sibling
node generation [4], CVBFP is slow to consider this option, preferring to try
alternative placements for the remaining feet until it exhausts its options and is
forced to backtrack. Our planner does not suffer from this problem because we
only explore a single contact location for a given foot and surface pair, making
RHCP comparatively quicker to give up on unproductive lines of exploration
and accept backing up. Further research is required to provide more confidence
in this hypothesis, but we note that similar problems were also encountered in
our preliminary work [8].

As one might expect, given that our planner is local while CVBFP is global,
Fig. 2a shows a statistically significant increase in the number of stance changes
made in the chimney climbing and stepping stones scenarios, with RHCP making
16.6 and 23.4 more stance changes than CVBFP on average, respectively. How-
ever, in the chimney walking and wall walking scenarios, RHCP made 37.0 and
53.9 fewer stance changes on average, respectively. Additionally, Fig. 2b shows
a statistically significant decrease in planning time for all scenarios, with RHCP
completing approximately 10 s faster than CVBFP in the chimney climbing scen-
ario, 5.5 minutes faster in the chimney walking and stepping stones scenarios,
and 10 minutes faster in the wall walking scenario on average. Furthermore, as
the slowest CVBFP results, those which timed out, have been excluded from the
analysis in Fig. 2b the true improvement in execution time, particularly in the
wall walking scenario, may be greater than that shown.

7 Conclusions

This paper presented a novel posture generator for legged robots to successfully
generate several motions in challenging environments. With a two-step planning
horizon, our approach was faster than the state-of-the-art in all scenarios tested,
in some cases generating shorter paths despite being a local planner, all while
adding new capabilities—namely, the ability to simultaneously plan whole-body
trajectories.

Future works will analyse in more detail how different environments and
horizon depths affect the performance of the two planners and validate the paths
produced by executing them in realistic simulations and on the physical robot.
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Number of Stance Changes
Difference in Means Effect Sizes

Chimney Climbing

Chimney Walking

Stepping Stones

Wall Walking

(a) Number of stance changes.

Planning Time
Difference in Means (s) Effect Sizes

Chimney Climbing

Chimney Walking

Stepping Stones

Wall Walking

(b) Planning time.

Figure 2: Plots of probability distributions regarding the number of stance
changes in the motions planned (top) and the typical planning time (bottom)
for each environment. In each case, we show the difference in means µR − µC

between RHCP and CVBFP (left) as well as effect sizes σ (right).
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